Packages need to import
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn import metrics
Step 1 - Used pandas for following parameters (importing data , get data info , describe data , data clening and analysis)
step 2 - used seaborn and matplotlib for ploting data in order to visualize it properly some most common visualization are join plot , pair plot ,distplot,scatter plot.
step 3 - split your data in to x and y on the bases of numerical columns 'x contain depennding parameter and y contain prediction paramter )
step 4 - using sklearn train_test_split method split your data in to test and train ex-
x_train , x_test , y_train , y_test = train_test_split(x ,y ,test_size = 0.3 , random_state =101)
step 5 - using regression find ( best fit , coeff_ , intersect )
step 6 - using regression find (predict value of test data )
spet 7 - visualize it accuracy using scatter plot with respect to y_test and prediction using matplotlib
step 8 -calculate mean_absolute_error , mean_squared_error , mean_squared_error with respect to prediction and y_test
step 9 - create dataframe for regression coeff
spet 10 - conclusion based on your analysis
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn import metrics
Step 1 - Used pandas for following parameters (importing data , get data info , describe data , data clening and analysis)
step 2 - used seaborn and matplotlib for ploting data in order to visualize it properly some most common visualization are join plot , pair plot ,distplot,scatter plot.
step 3 - split your data in to x and y on the bases of numerical columns 'x contain depennding parameter and y contain prediction paramter )
step 4 - using sklearn train_test_split method split your data in to test and train ex-
x_train , x_test , y_train , y_test = train_test_split(x ,y ,test_size = 0.3 , random_state =101)
step 5 - using regression find ( best fit , coeff_ , intersect )
step 6 - using regression find (predict value of test data )
spet 7 - visualize it accuracy using scatter plot with respect to y_test and prediction using matplotlib
step 8 -calculate mean_absolute_error , mean_squared_error , mean_squared_error with respect to prediction and y_test
step 9 - create dataframe for regression coeff
spet 10 - conclusion based on your analysis
No comments:
Post a Comment